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Abstract

In this memorandum we present an informally argued
derivation of the properties of topographic vector
quantisers in the limit of a large codebook size. In
particular, we prove that the code vector density does
not depend on one's choice of neighbourhood
function, provided that we use the minimum distortion
(rather than the nearest neighbour) encoding
prescription. This result suggests that widespread use
of the nearest neighbour prescription in topographic
mapping networks is fundamentally misguided. It
would be advisable to remember that the nearest
neighbour prescription is assumed not derived, so its
adherents must accept defeat gracefully.
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1. Introduction

In this memorandum we concern ourselves with some interesting theoretical properties of
unsupervised adaptive networks (specifically, topographic mappings [1]). This is part of the
outcome of a programme of research whose purpose is to develop a more rigorous
theoretical underpinning for topographic mappings than has hitherto appeared in the
literature.

The asymptotic properties of topographic mappings have been the focus of some recent
research [2,3,4]. The derivations in [4] concentrated on standard topographic mappings [1],
whereas [3] concentrated on a slight variation of this approach which used a vector
quantiser model [5,61 to develop topographic-like mappings. For convenience, we call such
a model a topographic vector quantiser, to emphasise its relationship to both topographic
mappings and to vector quantisers. Both of these studies were limited to the mapping of a
one dimensional input space to a one dimensional output space.

In [4] an asymptotic density of weights (i.e. one dimensional weight vectors) p - Pa with
cx=((2wv+l) 2/3)/((w+l) 2+w-) emerged, where w described the half-width of a symmetnic
topographic neighbourhood function. In [3] the much simpler result az=1/3 emerged,
assuming a symmetric, monotonically decreasing topographic neighbourhood function. This
a-l/3 result is the same as is obtained in a standard scalar quantiser [7].

In this note we derive a vector generalisation of the scalar results that we presented in [31,
which can be applied to the problem of mapping an N dimensional input space to an n
dimensional output space (n•:V). The result p - pN/(N+2) (which reduces to P1t 3 in the one
dimensional N=1 case, as expected) is already known to hold for a standard vector quantiser
[8], and the critical question is whether this also applies to our variant of topographic
mappings, as it did in the one dimensional case. It turns out that it does, but the derivation is
rather involved.

2. Outline

Our derivation rests on three critical steps,

1. We assume that we can ignore second order effects such as curvature of the surface in
which the code vectors sit. This assumption may be satisfied by choosing a
topographic neighbourhood function whose mass is concentrated in the
neighbourhood of a single value, and then ensuring that the number of code vectors is
sufficiently large that the surface formed by the code vectors is locally smooth. This
allows us to approximate the expression for the average Euclidean distortion as the
sum of a pair of covariance matrices (or inertia tensors): the covariance of each
quantisation cell, plus the covariance of the cells in its topographic neighbourhood.

2. We assume that the topographic neighbourhood function is translation invariant, to
show that the relationship between these two types of covariance matrix does not
depend on one's location, apart from trivial rotation factors. Thus we express the
Euclidean distortion solely in terms of the covariance of each quantisation cell.
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Code Vector Density

3. We define a code vector density in terms of this covariance. This allows us to hold
constant the total number of code vectors whilst we minimise the average Euclidean
distortion with respect to the covariance of each quantisation cell.

Throughout our calculations we make extensive use of probabilities. We do this in order to
simplify the notational problems that can arise when we quantities, such as "the set of all
inputs that encode to give a particular code". Also, we make extensive use of Bayes'
theorem to manipulate the probabilities into various forms, as required. We do not claim
that the use of probabilities (plus Bayes' theorem) is a necessary part of our calculations,
but it certainly makes them much easier to perform, because the notation does most of the
work for us.

3. Covariance matrices

Firstly, define the average Euclidean distortion (or Lyapunov function) for encoding via
y(x), adding noise via P(y'ly), and then decoding via x'(y') as

D Jdx P(x)Jdy''P(y'ly(x))Bx-x'(y')B2  ()

The integration over y' takes account of the various possible distortions that might be
applied to the code y, and the integration over x averages over the various possible input
vectors that might be presented. Although this definition of D uses an L2 distortion metric,
our results can easily be generalised to an L, distortion metric, as we shall show later on.

Note that at this stage the encoding and decoding functions y(x) and x'(y') have not yet
been specified; it is minimisation of D with respect to the choice of these functions that
determines their actual form. We shall deal with x'(y') immediately, and defer y(x) until later
on.

Define the average vectors

x(y) - dx P(xlyy)x

x'(y') Jdx P(x-y')x = Jdy P(yly')x(y) (2)

x0 (y) J dy' P(y'ly)x'(y')

where we have implicitly used Bayes' theorem to construct the posterior probabilities
P(xly), P(xly) and P(yly'). Note that in Equation 2 we define x'Cy') so that it satisfies
D/'x'(y')=O, so henceforth we do not need to worry about minimisation of D with respect

to x'('). We make the other two definitions for later use, and present them at this stage
merely for convenience.

We wish to manipulate D into a form in which it is expressed as an integral over y-space, so
that we can identify how much distortion is associated with each czcde vector. We therefore
have to invert the order of the integrations in Equation 1. In order to do this we must
express the encoding operation y(x) using probability notation. Thus

D r Jdx P(x)J'dy' P(y'Iy)J'dy P(ylx)Ilx _ X"*(Y,)1 2  (3)

2
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where P(ytx)-8&y-y(x)). Now we manipulate the probabilities using Bayes' theorem and the
fact that x--y-}y' is a Markov chain, to obtain

P(x)P(y'Iy)P(ylx) = P(x,y,y') = P(y)P(y'ly)P(xly) (4)

whence

D =J'dy P(y)Jdy' P(y'Iy)J'dx P(xly)lx-x'(y')IJ2

= trace(Jdy P(y)r(y)) 
(5)

where trace ZZT = Ilz112, and where we have defined the covariance matrix (;(y) as

a(y)- = dy' PCy'Iy)J dx P(xly)(x - x'(y'))(x- x'(y'))r (6)

We have successfully arranged D as an integral over y-space, and we have "opened up" the
norm to reveal the covariance matrix that is hidden within. Our use of a covariance matrix
appears to be an unnecessary step at this point, but it turns out to be essential in order to
define a code vector density later on. We therefore use (traces of) covariance matrices,
rather than norms, throughout our calculations.

We may split o(y) into a sum of more primitive pieces as follows.

1. Use the identity (x-x'(y'))-(x-x(y))-(x'(y')-x(y)) to obtain a pair of terms
(x-x(y))(x-x(y))T and (x'(y')-x(y))(x'(y')-x(y))T. Note that the cross term vanishes
when x is integrated.

2. Use the identity (x'(y')-x(y))=(x'(y')-xo(y))-(x(y)-xo(y)) to replace the second of these
terms by another pair of terms (x'(y')-X0(y))(X'(y')-X0(y))T and (x(y)-xo(Y))(x(y)-xoty))T.
Note that that the cross term vanishes when is y' integrated.

3. Define some covariance matrices.

O0 (Y) = dx P(xly)(x- x(y))(x -x(y))

aG (y) Jdy' P(y'ly)(x'(y') - x (y))(x'(y') - x0 (y)) (7)

a 2 (y) W(x(y)- Xo(y))(x(y)- Xo (y)) T

to yield finally

a(y) = a 0 (y)+ Ct(y)+ a 2 (y) (8)

We may interpret a0 0y), a1(y) and o 2(y) as follows.

Consider ao0(y) first of all. xty) is the centroid of x (given y), which we obtain by integrating
(using as a "measure" the posterior probability P(xly)) over the continuum of inputs x. The
vector x-x(y) is the displacement of x relative to this centroid, so o0(y) is the covariance of
x (given y).

Now consider a,(y). In this case we integrate over y', not over x as we did for a0(y).
Because y actually corresponds to a discrete index in the codebook, this integral is a sum
(using as a "measure" the probability Pf,'ly)) over code indices. In this case x0(y) is the

3
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centroid of x'(y") (given y), and the vector x'(y') - x(y) is the displacement of x'(y') relative
to this centroid, so ;,(y) is the covariance of x'(y') (given y).

Finally consider a2(y). x(y) and x0(y) are the centroids used to define a0 (y) and 0,(y),
respectively. C2(Y) is the dyadic constructed from the displacement of these centroids from
each other.

We should point out at this stage that our calculations are exact thus far. In order to make
any further progress we need to make approximations, which we shall discuss in detail.

4. Approximations

In this Section we shall introduce several approximations that are essential to the analysis of
the leading order properties of topographic vector quantisers. The overall goal of this
Section is to develop an approximate expression for the covariance matrix a(y) in the form
a(y)=M0y)o0 (y)MT(y), where M(y) is a transformation, in order to express the distortion D
in terms of o0(y) alone, rather than o0(y)+a 1 (y).

In Section 4.1 we introduce a very useful approximation for the encoding function y(x),
which allows us to replace minimum distortion encoding prescription by an approximately
equivalent nearest neighbour encoding prescription. Note that this is not simply a naive
replacement of minimum distortion by nearest neighbour. In Section 4.2 we use this
approximation for y(x) to write an approximate expression for the covariance matrix o(y),
which is amenable to further analysis, unlike the exact expression. In Section 4.3 we
introduce a local lattice, and translation invariance P(y'ly) = POy/-y), in order to approximate
the positions of the x'(y') in each neighbourhood, which allows us to interrelate the two
components of c(y).

4.1. Nearest neighbour encoding

The y(x) that minimises the Euclidean distortion D is given by

y(X)- m j dy, P(y'ly)llx - x'(y')I' (9)
Y

where "arg min y ... " means "the value of y that minimise.". Because the expression that

is minimnised is 'dy" P(y'_y) x- '(y')l 2 , rather than ILr-x',y)I,, this type of y(x) is called

a "minimum distortion" encoding prescription, rather than a "nearest neighbour" encoding
prescription. Note that these two prescriptions are the same when the neighbourhood
function collapses to zero size, i.e. P(y'Iy)--(y'-y).

By using the identity (x-x'(y'))-(x-xoOy))-(x'(y')-xo(y)), and noting that the cross term
vanishes when is y' integrated, we may rearrange y(x) into the form

ycx)- ". hI~m(lx- o (y)12 + IJd' ,(y'Iy)Ix(y')- xo (y)jJ)
(10)

-'" (Uj-xO(y)ll"+ trace a;,(y))
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Let us assume that the trace a,1 y) term is a slowly varying function of y compared to the
ILr-x 0 (y)112 term, then we may approximate y(x) as

y(x) = WS flfjx - x j y)2 (1 I)

which has the form of a "nearest neighbour" encoding prescription. Therefore the x0 (y) act
as the effective code vectors in a "nearest neighbour" encoding prescription that is
approximately equivalent to the ideal "minimum distortion" encoding scheme.

We have deduced that the effect of the neighbourhood function P(y'ly) can be accounted for
by replacing "minimum distortion" encoding by an approximately equivalent "nearest
neighbour" encoding prescription, which is not simply obtained by ignoring the effect of
P(y'ly) altogether, as one might have naively assumed.

We shall make extensive use of this equivalence, because "nearest neighbour" encoding is
conceptually simpler than "minimum distortion" encoding.

4.2. Covariance matrix

The contribution of the 0 2(y) term to the Euclidean distortion D is proportional to
ILx0,)-x 0 ,y)lI2. Therefore minimising D tends to make the vectors x(y) and x00y) become
similar to each other, so we shall henceforth assume

x(y) = X0 (Y) (12)

This approximation says that the centroid x(y) of the quantisation cell attached to y is
approximately coincident with the effective code vector x0(y) that defines the quantisation
cell boundaries via a "nearest neighbour" prescription.

We may use this relationship to approximate the contributions to a(ty) as

0o(y) =- dx P(xly)(x- x 0 (y))(x- Xo(y))T

Co (y) = Jdy' P(y'ly)(x'(y') - x,(y))(x'(y') - xo (y)) (13)

CY, (y) - 0

where we repeat the exact equation for ao(y), for convenience.

We use the x0(y) to implement a "nearest neighbour" encoding scheme, so a(y) reduces
approximately to a sum a0(y)+of1(y) of two contributions which we may readily interpret:

(a) co(y) is the covariance matrix of the "quantisation cell" attatched to y, and centred
on xOy).

(b) o1 'y) is the covariance matrix of the vectors x'(y') having mass P(y'ly), whose
centroid is x0(y).

This simplification of the interpretation of o(y) is possible only because of the assumptions
that we have made, which are essentially all to do with assuming that properties vary slowly
on the scale of a quantisation cell.

5
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4.3. Lattice of code vectors

There are two approximations that we make in order to simplify our analysis of the code
vectors x'(y').

I. We make our first approximation in order to relate ao(y) to cyo0y) in a simple way.
Thus we develop a first order Taylor expansion of x'(y) about the point y-=y'o

x'(y')= x'(Yo)+(y'-yo" ) T +... (14)

The term proportional to (y'-y'o) generates a linear variation of x'(y') with y', wl':h
corresponds to a uniform lattice of vectors x'(yj), with y' indexing the lattice points
and x'(y) locating the lattice points in x-space.

The omitted higher order terms would introduce non-uniformities into this lattice.
There are two basic types of contribution: non-uniform stretching of the lattice, and
lattice curvature. These two contributions arise from components of the second
derivative , ,-2x'(y' 0 )ay'0y' 0 which lie parallel or perpendicular to the surface in which
Dx'(y'0 )/My% lies, respectively. We shall assume that the properties of x'(y') vary
sufficiently slowly on the scale of a topographic neighbourhood that we may ignore
these higher order corrections.

2. Now we make our second approximation in order to ensure that the relationship
between o(y) to o0 (y) has a simple dependence on y. We assume that P(y'ly) is
translation invariant, so that

P(y'jy) = P(y'- y) (15)

Equation 2 then becomes

Xo(Y)- j dy" P(y'- y)x'(y') (16)

which ensures that the lattice of x0(y) is locally uniform, because it is a convolution of a

fixed kernel with a locally uniform lattice of x'(y). This requires that the x0(y) and the x'(y')
lattices are locally identical, modulo a spatial translation. Furthermore, this uniformity
implies that the quantisation cells (implied by the x0(y)) are themselves locally identical in
shape.

Under these conditions, the decomposition a(y) can be expressed in the form

o(y) - M(y)oo(Y)M(y)r (17)

where M(y) is a matrix that transforms ao(y) into oo(y)+a 1(y). Assuming P(y'ly) = P(y'-y),

oG(y) is determined uniquely by Co(y), so M(y) must have the approximate form

M(y) - R(y)SRr(y) (18)

M(y)-' - R(y)S-' Rr (y)

where R(y) is an orthogonal matrix (i.e. a rotation) which satisfies R(y)RT(y)=1, and where
S is a diagonal matrix (i.e. a scaling). Note that R(y) depends on y because it must rotate

6
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a0(y) into a standard orientation (i.e. remove the peculiar local orientation of the lattice of
x0(y) vectors) before applying the invariant scaling S (i.e. transform a0 y() into YO0(y)+a 1 (y)).

This factorisation of ac(y) is important, because it allows us to simplify det(a(y)) thus

det(a(y)) - (detS)2 deta 0(y) (19)

This result simply states that the "volume" of the full covariance o(y) is a constant factor
times the "volume" of the covariance co(y) of a single quantisation cell. This result emerges
in leading order because we assumed P(y'ly) = P(y'-y).

5. Minimise the distortion

We now minimise the Euclidean distortion D with respect to variations of the components
of a(.y), whilst holding constant the total number K of code vectors. In Section 5.1 we use
the covariance matrix o0 (y) to define a code vector density, which is, after all, the quantity
of interest. In Section 5.2 we minimise D with respect to the values of the components of
oo(y) whilst holding constant the total number of code vectors, and in Section 5.3 we
present the result for the optimal code vector density. In Section 5.4 we demonstrate how
our approach specialises to the case of minimising the Euclidean distortion in a standard
vector quantiser.

5.1. Code vector density

The codc vector density p(x) is defined as the number of quantisation cells per unit volume
of x-space, which is the reciprocal of the volume of the quantisation cells in the locality of
x. This volume may easily be determined from the covariance matrix o0(y), to yield the
following definition of code vector density

p(x) - (det a, (y(x)))-"2  (20)

The total number of code vectors K is the integral over all x of the code vector density, so

K = Jdx p(x)

= Jdx (deta 0o(y(x)))-"' (21)

- detS I dx det o(y(x))

where we used the factorisation of a(y) given in Equation 17. This expression for K is non-
trivial, because it required a lot of work in Section 4 to derive Equation 17. Indeed, this was
the main purpose of Section 4.

5.2. Stationary distortion

Finally, we have all of the basic results that we need in order to minimise the Euclidean
distortion D with respect to the values of the components of a(y), whilst holding constant
the total number K of code vectors.

7
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We may impose the constraint by introducing a Lagrange multiplier X and locating the
stationary point of

D(X)mD+XK
S(22)

Jdr(P(x) traceo(y(x)) + XdetS det a(y(x)))

Functionally differentiate D(o) with respect to the components aoty) of the covariance

matrix o(y), using the results

6 trace a(w)

8 8f a(w-y) (23)

8det cr(w) = a(w)' det a(w) 8(w- y) (24)
8a%(y)

where o~)•is the (j,i)-th component of o(w)-'. This yields

8D~) Idx8(~yx))p~)8••,eto~yx)-•detc(y(x))) (25)

boo (Y) 2 2ý

If we assume that P(x) varies slowly as x ranges over those values that satisfy y=y(x), then

we can satisfy the condition 8D(X)/&oo(y)--O by choosing

T# (y(x)) *- P(x)-"2/N) 80 4(26)

It is important to note that the x-dependence of this result does not depend on the details of

the topographic neighbourhood function P(y'ly), other than its assumed translation

invariance P(y'Iy)=P(y'-y), and the slow variation assumptions that we made earlier.

Note that the result in Equation 26 can easily be generalised to an L, distortion metric, by

replacing the trace o(y) by (trace o(y))"12, to obtain eventually o;4(y(x))cP(x)-21(N÷)8J.r.

5.3. Stationary code vector density

Finally, we may use the factorisation of o0y) in Equation 17 to write the covariance of each

quantisation cell a0(x) as

a,0(x) W P(x)-1I(N+ 2) R(y(x))S- R(y(x))T (27)

and, using the definition of code vector density in Equation 20, p(x) as

p(x) P(x)N/(+ 2,) (28)

which easily generalises to p(x)-P(x)rl(N+?) for an L, distortion metric.

The result in Equation 28 reveals that the code vector density does not depend on the form
of the topographic neighbourhood function. However, note that we made the following
assumptions in order to derive this result:

1. P(y'ly)=P(y'-y), so that local translation invariant solutions can develop.

8
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2. P(y'-y) is "local", so that smooth solutions can develop.

3. K is "large", so that local variations of P(x) and higher order (curvature) corrections
to the lattice of code vectors can be ignored.

5.4. Special case: vector quantiser

In the case of a standard vector quantiser (with a zero width topographic neighbourhood
function), a simplified version of our approach can be used. The distortion D is then given
by

D -= P(x)ljx - x(y)lI
(29)

=J'dr P(x) traceCa(Yx))

where P(y'Iy)--(,y'-y) and a(y)=q0(y) (i.e. we do not need to consider extra terms arising
from a non-zero topographic neighbourhood). The code vector density p(x) is then given by

p(x) (det C(Y~x)))-V 2  (30)

We could minimise the distortion with respect to the components a./y) of the covariance
matrix o(y), as we have already done. However, it is simpler to argue straight away that
o(y) must be isotropic (i.e. o0(y)=soy)8,), because locally there are no special directions in
x-space. Thus we can write

traceo(y) = N s(y)

detac(y) = s(y)N 
(31)

and then minimise the distortion with respect to the scalar s(y), or, equivalently, with
respect to the code vector density p(x) (=soy(x))-.Ivf) itself.

If we express this minimisation problem in terms of p(x), rather than sOy), it becomes

8 (f dx p(X)p(X)-2N + Xf dxpW))= 0 (32)8p(x)

whose solution is p(x) - P(x)/(N÷2), as expected.

This result can easily be generalised to an L, distortion metric by replacing the p(x)-VN by
p(x)-'IN, to obtain p(x) - P(x)Ivl(N+÷). This derivation of the optimum code vector density is
simpler, and more intuitive, than the one presented in [8].

6. Conclusions

In this memorandum we have examined the properties of a special type of vector quantiser,
called a topographic vector quantiser because of its similarity to a topographic mappings.
The only difference between the respective training algorithms is that topographic mappings
use a "nearest neighbour" encoding prescription, whereas topographic vector quantisers use
a "minimum distortion" encoding prescription.

9
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We have derived the leading order properties of the code vectors of topographic vector
quantisers, and we have shown that the code vector density is insensitive to one's choice of
topographic neighbourhood function, provided that it is of convolution type (i.e. the same
for all code vectors). This result stands in stark contrast to the strong dependence of the
code vector density on topographic neighbourhood function in a standard topographic
mapping.

This result strongly suggests that minimum distortion encoding is a more theoretically
respectable encoding prescription than nearest neighbour encoding. Indeed, minimum
distortion is a derived prescription, whereas nearest neighbour is an assumed prescription,
so the nearest neighbour prescription should be used with suspicion.

7. Notation

Define the basic vectors and functions.

x input vector

y code

y' distorted code

y(x) encoding function - transform from x-space to y-space

x'(y') decoding function - transform from y'-space to x-space

N the dimensionality of the input vector

D the average Euclidean distortion between input and reconstruction

p(x) the code vector density

K the total number of code vectors

X a Lagrange multiplier

Define the basic densities.

P(x) density of inputs

P(yLx) density of codes (given that the input is known) - assumed to be 8(y-y(x))

P(y'ly) density of distorted codes (given that the code is known)

Define the derived densities (obtained using Bayes' theorem).

P(xly) posterior density of inputs (given that the code is known)

P(xly') posterior density of inputs (given that the distorted code is known)

P(yly') posterior density of codes (given that the distorted code is known)

Define the derived functions (obtained using the posterior densities, etc)

x(y) the centroid of x (given that y is known)

x0ty) the centroid of x'(y') (given that y is known)

c(y) the matrix whose average trace is the Euclidean distortion

ao(y) the contribution to aty) from a quantisation cell

10
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a(;y) the contribution to a(y) from the topographic neighbourhood of a cell

M(y) the transformation which converts o0(y) into a(y)

R(y) the "rotate" part of M(y)

S the "scale" part of M0y)
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